Database Authors
Summary Staphylococcus epidermidis is a ubiquitous human skin colonizer that can be isolated from all skin microenvironments [Byrd18].

Unlike many pathogenic skin bacteria from the Staphylococcus genus that possess the coagulase enzyme (which binds to and activates prothrombin in the blood, resulting in clotting of plasma or blood), S. epidermidis is coagulase-negative. Many studies have regarded S. epidermidis as a benign or beneficial member of the skin microbiota that is involved in barrier development, maintenance of homeostasis, and control of opportunistic pathogens. For example, the organism produces small α-helical peptides (called phenol-soluble modulins or PSMs) that synergize with host antimicrobial peptides to enhance killing of pathogens [Cogen10], and lipoteichoic acid produced by the organism was shown to attenuate the inflammatory response and accelerate wound healing in a Toll-like receptor (TLR)-3-dependent mechanism [Lai09].

However, it is now well documented that the organism can sometimes cause infections, particularly in people with weakened immune systems or those with implanted medical devices such as catheters, prosthetic joints, and prosthetic heart valves [vonEiff02, Otto09]. The cysteine protease Staphopain A, which is produced by the organism, is a key mediator of S. epidermidis—induced degradation of the skin barrier in atopic dermatitis patients [Hon16, Byrd17, Brown20].

Staphylococcus epidermidis is a facultative anaerobe and possesses complete glycolysis and pentose phosphate pathways, as well as the tricarboxylic acid (TCA) cycle (but not the glyoxylate shunt). It mainly catabolizes carbohydrates through the glycolytic and the pentose phosphate pathways. However, it can use also oxygen, nitrate, and nitrite as terminal electron acceptors, and activity of the TCA cycle and the electron transport chain depends on the availability of these acceptors.

Approximately 80% of the 2.5 Mb S. epidermidis genome is composed of core genes, whereas the remaining 20% are variable [Conlan12]. Native populations are undergoing multiple horizontal gene transfer events via plasmid and phage to adapt to their specific skin niche [Zhou20].

Staphylococcus epidermidis RP62A was isolated in 1979 from a patient with intravascular catheter-associated sepsis during the investigation of an outbreak of coagulase-negative stahpylococcal sepsis that took place at the City of Memphis Hospital and the adjoining University of Tennessee Hospital [Christensen82, Christensen83]. The organism was originally classified as a strain of Staphylococcus hominis, but later reclassified as Staphylococcus epidermidis [Baddour84]. The strain, which is methicillin-resistant, produces a biofilm (originally referred to as slime) [Christensen82a, Christensen85]. Researchers have used Staphylococcus epidermidis RP62A to study the molecular mechanisms underlying biofilm formation, as well as to develop new strategies for preventing and treating biofilm-associated infections. Additionally, the strain has been used as a benchmark strain in genomic studies of S. epidermidis, allowing for comparisons between different strains of the bacterium.

The Staphylococcus epidermidis RP62A genome was sequenced in 2005 [Gill05]. This Pathway/Genome Database (PGDB) was generated by the PathoLogic component of Pathway Tools software version 26.5 [Karp11, Karp16] and MetaCyc version 26.5 [Caspi18] on Aug 24 2022, and improved by limited manual curation.

Genome
RepliconTotal GenesProtein GenesRNA GenesPseudogenesSize (bp)NCBI Link
chromosome2,5102,34898642,616,530RefSeq:NC_002976.3
plasmid pSERP30270327,310RefSeq:NC_006663.1
Total:2,5402,37598672,643,840
Ortholog data available?Yes
Database Contents
Genes2,540
Pathways248
Enzymatic Reactions1,308
Transport Reactions80
Polypeptides2,381
Protein Complexes112
Enzymes693
Transporters200
Compounds862
Transcription Units1,520
tRNAs61
Transcriptional Regulation13
Protein Features6,504
GO Terms22,223
Database Version29.0
Taxonomic Lineage cellular organisms
Bacteria <bacteria>
Terrabacteria group
Bacillota
Bacilli
Bacillales
Staphylococcaceae
Staphylococcus
Staphylococcus epidermidis
Staphylococcus epidermidis RP62A
Genetic Code Number 11 -- Bacterial, Archaeal and Plant Plastid (same as Standard, except for alternate initiation codons)
NCBI-Taxonomy176279
Relationship to Oxygenfacultative
Trophic Levelheterotroph
Temperature Rangemesophile
Biotic Relationshipcommensal
Pathogenicityanimal
Copyright © SRI International 1999-2023.


References

Baddour84: Baddour LM, Christensen GD, Hester MG, Bisno AL (1984). "Production of experimental endocarditis by coagulase-negative staphylococci: variability in species virulence." J Infect Dis 150(5);721-7. PMID: 6491379

Brown20: Brown MM, Horswill AR (2020). "Staphylococcus epidermidis-Skin friend or foe?." PLoS Pathog 16(11);e1009026. PMID: 33180890

Byrd17: Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, NISC Comparative Sequencing Program, Belkaid Y, Segre JA, Kong HH (2017). "Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis." Sci Transl Med 9(397). PMID: 28679656

Byrd18: Byrd AL, Belkaid Y, Segre JA (2018). "The human skin microbiome." Nat Rev Microbiol 16(3);143-155. PMID: 29332945

Caspi18: Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK, Paley S, Subhraveti P, Karp PD (2018). "The MetaCyc database of metabolic pathways and enzymes." Nucleic Acids Res 46(D1);D633-D639. PMID: 29059334

Christensen82: Christensen GD, Bisno AL, Parisi JT, McLaughlin B, Hester MG, Luther RW (1982). "Nosocomial septicemia due to multiply antibiotic-resistant Staphylococcus epidermidis." Ann Intern Med 96(1);1-10. PMID: 7053681

Christensen82a: Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982). "Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces." Infect Immun 37(1);318-26. PMID: 6179880

Christensen83: Christensen GD, Parisi JT, Bisno AL, Simpson WA, Beachey EH (1983). "Characterization of clinically significant strains of coagulase-negative staphylococci." J Clin Microbiol 18(2);258-69. PMID: 6311870

Christensen85: Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985). "Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices." J Clin Microbiol 22(6);996-1006. PMID: 3905855

Cogen10: Cogen AL, Yamasaki K, Muto J, Sanchez KM, Crotty Alexander L, Tanios J, Lai Y, Kim JE, Nizet V, Gallo RL (2010). "Staphylococcus epidermidis antimicrobial delta-toxin (phenol-soluble modulin-gamma) cooperates with host antimicrobial peptides to kill group A Streptococcus." PLoS One 5(1);e8557. PMID: 20052280

Conlan12: Conlan S, Mijares LA, NISC Comparative Sequencing Program, Becker J, Blakesley RW, Bouffard GG, Brooks S, Coleman H, Gupta J, Gurson N, Park M, Schmidt B, Thomas PJ, Otto M, Kong HH, Murray PR, Segre JA (2012). "Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates." Genome Biol 13(7);R64. PMID: 22830599

Gill05: Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005). "Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain." J Bacteriol 187(7);2426-38. PMID: 15774886

Hon16: Hon KL, Tsang YC, Pong NH, Leung TF, Ip M (2016). "Exploring Staphylococcus epidermidis in atopic eczema: friend or foe?." Clin Exp Dermatol 41(6);659-63. PMID: 27416972

Karp11: Karp PD, Latendresse M, Caspi R (2011). "The pathway tools pathway prediction algorithm." Stand Genomic Sci 5(3);424-9. PMID: 22675592

Karp16: Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, Kothari A, Weaver D, Lee T, Subhraveti P, Spaulding A, Fulcher C, Keseler IM, Caspi R (2016). "Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology." Brief Bioinform 17(5);877-90. PMID: 26454094

Lai09: Lai Y, Di Nardo A, Nakatsuji T, Leichtle A, Yang Y, Cogen AL, Wu ZR, Hooper LV, Schmidt RR, von Aulock S, Radek KA, Huang CM, Ryan AF, Gallo RL (2009). "Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury." Nat Med 15(12);1377-82. PMID: 19966777

Otto09: Otto M (2009). "Staphylococcus epidermidis--the 'accidental' pathogen." Nat Rev Microbiol 7(8);555-67. PMID: 19609257

vonEiff02: von Eiff C, Peters G, Heilmann C (2002). "Pathogenesis of infections due to coagulase-negative staphylococci." Lancet Infect Dis 2(11);677-85. PMID: 12409048

Zhou20: Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J (2020). "Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin." Cell 180(3);454-470.e18. PMID: 32004459


References

Arakawa81: Arakawa H, Shimada A, Ishimoto N, Ito E (1981). "Occurrence of ribitol-containing lipoteichoic acid in Staphylococcus aureus H and its glycosylation." J Biochem 89(5);1555-63. PMID: 6268617

Brown13: Brown S, Santa Maria JP, Walker S (2013). "Wall teichoic acids of gram-positive bacteria." Annu Rev Microbiol 67;313-36. PMID: 24024634

Grant79: Grant WD (1979). "Cell wall teichoic acid as a reserve phosphate source in Bacillus subtilis." J Bacteriol 137(1);35-43. PMID: 104966

Heptinstall70: Heptinstall S, Archibald AR, Baddiley J (1970). "Teichoic acids and membrane function in bacteria." Nature 225(5232);519-21. PMID: 5411858

Hether83: Hether NW, Jackson LL (1983). "Lipoteichoic acid from Listeria monocytogenes." J Bacteriol 156(2);809-17. PMID: 6415040

Iwasaki86: Iwasaki H, Shimada A, Ito E (1986). "Comparative studies of lipoteichoic acids from several Bacillus strains." J Bacteriol 167(2);508-16. PMID: 3733670

Iwasaki89: Iwasaki H, Shimada A, Yokoyama K, Ito E (1989). "Structure and glycosylation of lipoteichoic acids in Bacillus strains." J Bacteriol 1989;171(1);424-9. PMID: 2914853

Kemper93: Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ (1993). "Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis." J Bacteriol 175(17);5690-6. PMID: 8396121

Koch84: Koch HU, Haas R, Fischer W (1984). "The role of lipoteichoic acid biosynthesis in membrane lipid metabolism of growing Staphylococcus aureus." Eur J Biochem 138(2);357-63. PMID: 6697992

Lambert77: Lambert PA, Hancock IC, Baddiley J (1977). "Occurrence and function of membrane teichoic acids." Biochim Biophys Acta 472(1);1-12. PMID: 406922

Mauel89: Mauel C, Young M, Margot P, Karamata D (1989). "The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis." Mol Gen Genet 215(3);388-94. PMID: 2496299

Miorner83: Miorner H, Johansson G, Kronvall G (1983). "Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci." Infect Immun 39(1);336-43. PMID: 6337099

Percy14: Percy MG, Grundling A (2014). "Lipoteichoic acid synthesis and function in gram-positive bacteria." Annu Rev Microbiol 68;81-100. PMID: 24819367

Uchikawa86: Uchikawa K, Sekikawa I, Azuma I (1986). "Structural studies on lipoteichoic acids from four Listeria strains." J Bacteriol 168(1);115-22. PMID: 3093460

Wicken75: Wicken AJ, Knox KW (1975). "Lipoteichoic acids: a new class of bacterial antigen." Science 187(4182);1161-7. PMID: 46620



Report Errors or Provide Feedback
Page generated by Pathway Tools version 29.0 (software by SRI International) on Mon Jun 30, 2025, BIOCYC14.